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Abstract—Molecular markers have A Bayesian method for identification of 
been demonstrated to be useful for 
the estimation of stock mixture pro- stock mixtures from molecular marker data 
portions where the origin of indi-
viduals is determined from baseline 
samples. Bayesian statistical meth- Jukka Corander (contact author) 
ods are widely recognized as provid- Pekka Marttinen 
ing a preferable strategy for such 
analyses. In general, Bayesian esti- Samu Mäntyniemi 

mation is based on standard latent Department of Mathematics and Statistics 
class models using data augmenta- P.O. Box 68 
tion through Markov chain Monte Fin-00014 
Carlo techniques. In this study, we University of Helsinki 
introduce a novel approach based on Helsinki, Finland 
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of genetic population structure. Our 
strategy combines analytical integra-
tion with stochastic optimization to 
identify stock mixtures. An important 
enhancement over previous methods 
is the possibility of appropriately han- Stock mixture analysis using multi- propriate estimates. First, in the 
dling data where only partial baseline locus genotypes of fish is recognized presence of very small groups of in-
sample information is available. We as a versatile tool in fisheries man- dividuals representing some stock 
address the potential use of nonmo- agement. The efficiency of combining sources, the posterior distribution of 
lecular, auxiliary biological informa- polymorphic molecular markers, such the origins for these particular indi-
tion in our Bayesian model. as microsatellites, with a model-based viduals and the corresponding poste-

approach to estimate stock mixtures, riors of the source allele frequencies 
has been clearly demonstrated in the will typically comprise a high level of 
literature (Kalinowski, 2004; Reyn- uncertainty. Consequently, the result-
olds and Templin, 2004). Since the ing MCMC simulation error in the 
beginning of the 21st century, Baye- estimates may be considerable. Sec-
sian methods have largely replaced ond, when there are baseline samples 
the earlier applied maximum likeli- available only for a subset of potential 
hood approach based on latent class stock sources, estimation of origins is 
mixture models (Pella and Masuda, not feasible (Pella and Masuda, 2001). 
2001). A similar trend has been true Use of the standard approach with a 
for the estimation of genetic popula- fixed number of sources, based on the 
tion structure in general (e.g., Pritch- available baseline samples, may easily 
ard et al., 2000; Corander et al., 2003, lead to spurious estimates when there 
2004; Beaumont and Rannala, 2004). are individuals representing several 
For an earlier approach to mixture additional sources in the data. Simi-
analysis with incomplete information larly, it is difficult to detect outlier 
about source populations, see Smouse individuals with the latent class ap-
et al. (1990). proach with a fixed number of sources 

Bayesian methods for estimation (Pritchard et al., 2000) because they 
of stock mixtures has generally been are unlikely to be identified in the 
based on exploitation of data augmen- MCMC simulation for data sets of 
tation through Markov chain Monte moderate to large size. Third, under 
Carlo (MCMC), where latent origins partial baseline information, it is dif-
of caught individuals and values of ficult to appropriately infer a suitable 
the other model parameters are suc- number of stock sources to represent 
cessively simulated from the corre- a particular data set. 
sponding posterior distributions. Such Partition-based Bayesian alterna-
an approach is capable of avoiding tives to latent class models for iden-
certain estimation problems caused tification of genetic mixtures with-
by missing data and rare alleles, out baseline samples have recently 
which severely affect the maximum been introduced (Dawson and Belkhir 
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more feasible when the number of genetically diverged 
sources contributing to the observed data is unknown. 
A wide variety of applications of this approach can be 
found in the literature (e.g., Heuertz et al., 2004, Seppä 
et al., 2004, Mäki-Petäys et al., 2005). The approach 
by Dawson and Belkhir (2001) is similar to that of 
Corander et al. (2004) in spirit; however, it is subject to 
two important limitations that prevent an efficient use 
of this approach in the current context. First, there are 
no readily available informative forms of the family of 
prior distributions used by Dawson and Belkhir (2001), 
which would be necessary for representing the baseline 
information. Second, their model formulation does not 
allow for missing alleles in the molecular marker data, 
which are present in most real data sets. 

In our study, we extend the partition-based approach 
to incorporate a priori baseline information, making 
it suitable for identification of stock mixtures, either 
under complete or partial baseline sample informa-
tion. Our focus is on the identification of the putative 
genetic mixture in the catch sample data, provided by 
the maximum a posteriori estimate of the assignment 
of the individuals into an unknown number of sources. 
Given the estimate, the proportions of the stocks in 
the population can be readily inferred by using the 
standard multinomial-Dirichlet model (e.g., Pella and 
Masuda, 2001) and generic Bayesian software, such 
as BUGS (Spiegelhalter et al., 2003), which has been 
widely used for fish population modeling (e.g., Meyer 
and Millar, 1999; Mäntyniemi and Romakkaniemi, 
2002; Mäntyniemi et al., 2005). 

Another novelty in our method is the possibility of 
using available biologically relevant information to pre-
assign catch data into groups that can be considered 
as sampling units in the model. For instance, when 
the behavior of the investigated species is such that 
individuals obtained simultaneously at a single catch 
location are known to represent the same (yet unknown) 
stock, they can be allocated as a single unit to an ori-
gin. Such use of auxiliary information enhances the 
statistical power to detect the correct origin when the 
number of molecular marker loci available is limited. 
To illustrate our modeling approach, and to investigate 
its performance under various biological settings, we 
present results from several simulation experiments 
based partly on real molecular data for the Baltic Sea 
stock mixture of Atlantic salmon (Salmo salar). 

Methods 

Bayesian stock mixture model 

In stock mixture estimation, there are typically avail-

individuals available. Furthermore, there may be an 
additional number of potential stocks contributing to the 
catch population; however, these are not represented by 
any baseline samples. We let K (m≤K) denote the total 
number of potential stocks, which can have contributed 
to a catch sample of n individuals, whose origins are 
unknown. Notice that K is typically determined from the 
relevant biological information about the species under 
consideration. The target for our estimation is to infer 
the number of stocks, say k, having actually contributed 
to the catch sample, from the multilocus genotypes of 
both the baseline and catch individuals. 

Under the assumption that the genetic information 
consists of NL molecular marker loci, where at each 
locus j = 1,…, NL, there are NA(j) different alleles distin-
guished among all baseline and catch samples. Pella and 
Masuda (2001) introduced a rather complicated empiri-
cal Bayes procedure to determine the prior distribution 
for the allele frequencies in the potential stocks through 
the observed genotypes of the baseline individuals (all 
stocks were assumed to be represented by baseline sam-
ples). Here we consider a simpler approach, by suitably 
modifying the standard Dirichlet prior used in Corander 
et al. (2003, 2004). We assume that the allele frequen-
cies between marker loci are conditionally independent 
given the stock origins and consider the potential stocks 
to be in Hardy-Weinberg equilibrium (HWE). 

Let pi be the unknown frequency (or probability) jl 
of allele l in the stock i at locus j, given that k (k≤K) 
stocks are considered. Further, for each locus j = 1,…, 
NL, let αijl be a hyperparameter for a Dirichlet prior 
distribution of the allele frequencies of stock i (i = 1,…, 
k;l = 1,…, NA(j)). Given the baseline information, we may 
partially update our beliefs about the allele frequencies 
using the posterior distribution derived from an initially 
vague reference prior. For each of the m stocks, where 
baseline samples are available, we set αijl = ni l + 1/j NA(j), 
where ni l is the observed number of copies of allele l at j
locus j among individuals in the baseline sample of size 
ni. This hyperparameter updating procedure is standard 
in Bayesian analysis with the multinomial-Dirichlet 
model (Gelman et al., 2004). Correspondingly, for the 
other potential stocks, not represented by any baseline 
information, the count nijl is zero, and the hyperparam-
eter is determined as αijl = 1/NA(j). 

A putative assignment of the catch data to the po-
tential stocks is represented in our study by a parti-
tion-valued parameter S = (s1,…, sk), which allocates 
the n individuals into k non-empty clusters. A cluster 
is labeled as either the corresponding baseline sample 
or, alternatively, as a group of unknown geographical 
origin. The prior distribution of the allocation param-
eter P(S) is defined according to 

able in samples two types of individuals, which are 

 

=) c, if k ≤ K 

0, otherwise 
, (1) (P S ( 1,…, k )genotyped. One type consists of individuals with known = s s 

origin (baseline data), and the other type represents a 
catch sample, which may have been pooled from several 
sources. Let m be the number of potential stocks, such which corresponds to a uniform distribution over the 
that for each stock i = 1,…, m, there are ni baseline possible allocations of the catch individuals under the 
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restriction k≤K. This particular prior specification allows 
a convenient estimation algorithm to be constructed for 
identifying those allocations associated with high pos-
terior probabilities, given the molecular marker data. 
Also, our prior is considerably more informative from the 
biological perspective than the uniform prior with K = n 
used in Corander et al. (2004) because it assigns a zero 
probability to most allocations that are very unrealistic 
for a moderate or large sample size n. 

The posterior probability of an allocation S over the 
class of all putative candidates is defined as 

( | ( | ) ( ) / ∑ S∈ℑ p data S P Sp S data) = p data S P S ( | ) ( ), (2) 

where p(data|S) is the marginal likelihood of having 
the allele frequency parameters of each class si in S 
integrated out analytically (formula A1 in Corander et 
al., 2003) according to 

j k NL  Γ (∑ l α ijl ) 
NA( ) Γ (α ijl + ni ll )  ,p data S( | ) = ∏∏  ∏ 

i= 1 j= 1  Γ (∑ l α ijl + nijl ) l= 1 Γ (α ijl )  (3)	  

where ni l is now the observed number of copies of allele lj
at locus j among catch individuals allocated to cluster i. 
The analytical integration approach was used earlier in 
a related genetic context by Balding and Nichols (1997), 
Rannala and Hartigan (1996), Rannala and Mountain 
(1997). 

As can be seen from the above expression, the param-
eter that needs to be estimated in our stock mixture 
model is the allocation partition S. In situations where 
auxiliary biological information provides a pre-assign-
ment of some catch individuals into a priori sampling 
units, each known to represent a single unknown ori-
gin, the above formula still applies. However, the prior 
distribution of the allocation parameter needs to be 
modified accordingly, to exclude the values of S that 
assign individuals in the same sampling unit to distinct 
origins. 

Algorithm for allocation estimation 

In the sequel, we consider the general situation where 
the catch data are represented by a number of a priori 
sampling units, each containing potentially more than 
a single individual (see the previous section). When no 
auxiliary information for pre-assignment to sampling 
units is available, each sampling unit will correspond 
to a single individual in the catch data. 

The two main aspects of our stock mixture model 
that need to be estimated from marker data are the 
number of clusters (k) suitable for a particular data 
set, and the allocation of sampling units to the clusters. 
Corander et al. (2003, 2004) used various stochastic 
search strategies for estimation of a comparable model 
without prior baseline samples. In our study, we de-
velop an alternative method to enable analyses of data 
sets ranging from moderate to challenging because the 

MCMC algorithms introduced by Corander et al. (2003, 
2004) are computationally time and memory intensive. 
The central idea is to use a “greedy” stochastic search 
algorithm (Fletcher, 1987) to find a partition S with the 
highest posterior probability (Eq. 2). Repeated runs of 
the algorithm enable investigation of the stability of the 
estimation procedure, in a way that is similar to the 
parallel MCMC approach of Corander et al. (2004). 

An initial partition for the algorithm is determined 
by assigning sampling units one by one to such a clus-
ter, so that the resulting partition has the highest pos-
sible posterior probability. After specifying the initial 
partition, the greedy algorithm proceeds by perform-
ing the following operations repeatedly on the current 
partition: 

1	 The algorithm moves sampling units from one cluster 
to another. In a stochastic order, for each sampling 
unit, it calculates the change imposed to the poste-
rior probability P(S|data) by moving the particular 
sampling unit to any of the other clusters, including 
even an empty cluster, unless that would lead to 
k > K. It moves the sampling unit to the cluster that 
increases the value of P(S|data) most (if no increase 
is possible, the sampling unit is not moved). 

2	 It joins clusters. For each pair of clusters, the algo-
rithm calculates the change to P(S|data) imposed 
by joining them. It joins the two clusters that cause 
the maximal increase (if no increase is possible, no 
clusters are joined). 

3	 It splits clusters. Using the Kullback-Leibler diver-
gence between sampling units (Corander et al., 2003), 
the algorithm splits each cluster into maximally 20 
subclusters and calculates the change to P(S|data) 
imposed by keeping one of the introduced subclusters 
as a separate new cluster, or by joining it to any of 
the previously existing clusters. It keeps the new 
configuration that improves the value of P(S|data) 
most (if no improvement is possible the split is not 
made). 

4	 It splits clusters into exactly two maximally homo-
geneous subclusters with the Kullback-Leibler diver-
gence, otherwise analogously as in step 3. 

5	 It re-allocates several sampling units from a cluster. 
In a stochastic order, for each cluster, the algorithm 
orders the sampling units of the cluster such that the 
first sampling unit is the one whose removal from the 
cluster would improve the marginal likelihood of the 
cluster most, and so on. A putative candidate for a 
new partition is formed by moving sampling units one 
by one to some other cluster, such that the P(S|data) 
of the resulting partition is as high as possible (these 
moves are performed even if a single move results in 
a worse solution). If at some point the total change 
in P(S|data) is positive, the putative candidate is 
accepted and operation 5 is completed. When the total 
change remains negative, even after re-allocation of 
all the sampling units in a single cluster, the putative 
candidate is rejected and another cluster is chosen as 
a target until all clusters have been considered. 
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The optimization operations are repeated in a varying 
order, until none of them improves the posterior prob-
ability P(S|data) of the current partition. The allocation 
of sampling units to different clusters is based on the 
obtained partition, and the suitable number of clusters 
k is estimated from the partitions visited during the 
simulation. 

Measurement of the strength of evidence for any 
particular value of the partition S, given the marker 
data, is an intricate process, in particular for large 
data sets from complex stock mixtures. Theoretically, 
the unknown largest posterior probability may be ex-
tremely small, even in situations where a particular 
model provides an adequate fit to the observations. An 
important factor explaining such a feature is the large 
number of possible allocations, which all have positive 
posterior probabilities by definition. This feature is of 
general concern in a Bayesian analysis that comprises 
vast model spaces, see, e.g., the discussion in Madigan 
and Raftery (1994). Because the actual estimated value 
of the posterior probability may be an intuitively mis-
leading goodness-of-fit measure, we use an alternative 
strategy for characterization of the uncertainty in rela-
tion to the estimated allocation. 

Bayes factors (e.g., Kass and Raftery, 1995) provide a 
computationally efficient approach to local assessment 
of the amount of the peak of the posterior distribution 
around an estimate of S. Let S* denote an alternative 
allocation obtained from an estimate S by moving any 
particular sampling unit to another putative stock. The 
strength of evidence in favor of placing that sampling 
unit in the original stock against placement in the new 
stock is provided by the Bayes factor 

p data S P S( | ) ( ) , (4). = , ( 
BS S p data|S*)P S )( * 

which measures how many times more plausible the 
allocation S is for the particular sampling unit. When 
the value of Equation 4 is small, say BS,S* < 10 (or loge 
BS,S* < 2.3, Kass and Raftery, 1995), the data do not 
strongly support a single origin for the particular sam-
pling unit. Because calculation of these Bayes factors is 
computationally inexpensive, they can be easily provided 
for every possible sampling unit or stock combination. 

In addition to Bayes factors, conditional posterior 
probabilities for the allocation of each individual over 
the range of different putative stocks identified through 
S can be used to characterize the uncertainties in the 
Bayesian estimate. The conditional posterior probability 
distribution is defined for each individual by 

P S |data) = k

p data|S )P i ) ,( (
( i (5)i 

∑ p data|S )P S )( (i i 
i=11

where Si denotes that the particular individual is allo-
cated to the ith class of S (over the k possible alterna-

tives). When only a single stock has a high conditional 
posterior probability, the allocation is made on a firm 
basis. However, when at least two sources are identified 
with reasonably high posterior probabilities, the genetic 
evidence is not conclusive enough for a classification of 
the particular individual to a single source. The advan-
tage of the conditional posterior probabilities over Bayes 
factors in characterization of the classification uncer-
tainty for each individual is that the former compares 
simultaneously all putative sources, whereas the latter 
provides only a pairwise judgement. 

The correct number of clusters needed to describe the 
data can be estimated from the partitions that were 
visited during the simulation. During the simulation 
the algorithm stores the marginal likelihoods and the 
sizes of the 30 best visited partitions, and the posterior 
probabilities for the different numbers of clusters can 
then be estimated analogously to those estimated by 
Corander et al. (2004). Usually, if there is a lot of mo-
lecular data available (e.g., hundreds of loci have been 
observed) only a few of the best partitions have influ-
ence on the computed posterior probabilities because 
the relation of marginal likelihoods between different 
partitions can be up to ~exp(1000). If the data are 
sparse (e.g., only about 10−20 loci have been observed) 
and only partial baseline information is available, the 
uncertainty related to the correct number of clusters 
can be considerable because many partitions with dif-
fering sizes and approximately equal marginal likeli-
hood may be found. In these cases, to obtain a more 
reliable estimate of the correct number of clusters, the 
algorithm should be run multiple times with different 
upper bounds (K) in order to facilitate the identifica-
tion of those partitions that have real influence in the 
posterior probabilities. In our implementation of the es-
timation algorithm, we have included the possibility to 
automatically process information from multiple runs. 

Empirical illustration of the partition-based approach 

The Bayesian estimation algorithm described in the 
previous section is implemented in BAPS software.1 

The examples considered here are produced by BAPS 
analyses of data simulated by using the real data from 
Koljonen et al. (2002), who assessed allele frequencies for 
nine microsatellite markers in Atlantic salmon within 
the Baltic Sea region. We have experimented with sev-
eral simulation configurations to investigate how our 
method would be expected to perform under a variety 
of biological conditions. 

The five wild stocks of Atlantic salmon considered in 
Koljonen et al. (2002) correspond to five different rivers 
draining into the Baltic Sea: Tornionjoki (TornW), Simo-
joki (Simo), Iijoki (Ii), Oulujoki (Oulu), and Neva. The 
pairwise genetic distances (Nei’s DA, Nei et al., 1983) 
between these stocks underlying our simulations are 

1 BAPS software is freely available at URL http://www.rni. 
helsinki.fi/~jic/bapspage.html. Results presented here were 
calculated with version 3.1 (release date 5 March 2005). 



554 Fishery Bulletin 104(4) 

given in Table 1 (reproduced from Koljonen et al., 2002). 
An estimate of total FST (Weir and Cockerham, 1984) 
equal to 0.07 was obtained in Koljonen et al. (2002) 
for these stocks on the basis of the nine microsatellite 
loci. The magnitude of the genetic differentiation in the 
underlying population is fairly small, and the pairwise 
distances vary considerably. Thus, we may conclude that 
these stocks represent a biologically challenging setting 
for inference about the genetic mixture in a population 
sample. Using the individual stock allele frequencies, 
we have simulated baseline individuals and catch sam-
ples under the assumptions of HWE and no linkage 
between the loci. A wide variety of configurations, with 
complete and partial baseline information and different 
sample sizes, were tested. In the analyses involving five 
underlying stocks, we used K = 10 as the prior upper 
bound, and the estimation algorithm was run 12 times 
for each replicate data set. For cases with only two un-
derlying stocks, the upper bound was set as K = 6. 

Results of our simulation experiments are summa-
rized in Tables 2−8. As a summary, we highlight the 
following aspects. Uneven proportions of stock presence 
in the samples do not seem to affect the inference nota-
bly, even when the baseline information is only partial. 
The results in Table 3 are produced under a particu-
larly challenging situation, where the baseline informa-
tion comprises 40 individuals from a single stock only. 
The sample configuration then contains 40 individuals 
from this stock and 10 individuals from another, a pri-
ori unknown stock. The results show that our method 
performs surprisingly well in the identification of the 
outgroup, given that the genetic difference between 

Table 1 
Pairwise genetic distances (Nei’s DA, Nei et al., 1983) 
between different Atlantic salmon stocks within the 
Baltic Sea region (reproduced from Table 2 in Koljonen 
et al., 2002). Stocks correspond to five different rivers: 
Tornionjoki (TornW), Simojoki (Simo), Iijoki (Ii), Oulujoki 
(Oulu), and Neva. 

Stocks TornW Simo Ii Oulu 

Simo 0.129 
Ii 0.068 
Oulu 0.110 
Neva 0.261 

0.125 
0.164 0.131 
0.285 0.284 0.261 

the two underlying stocks is not negligible. However, 
as the results in Table 4 illustrate, the presence of pu-
tative stocks not represented by baseline information 
may also be masked by the baseline available for a ge-
netically similar stock. Identification of putative stocks 
without using any baseline information may de facto 
be more successful under such circumstances (compare 
Tables 4a–4d). Therefore, we suggest that in practice 
both types of analyses are performed and the results 
compared, since this is computationally inexpensive 
with our method. Our results indicate that incomplete 
baseline information is expected to be most fruitful for 
the identification task when there are baseline samples 
available from the stocks that are genetically most 
similar. The baseline configurations in Table 4 can be 

Table 2 
Allocation average percentages over 20 simulations, when 25 individuals from each stock were present in the sample data, and 
the number of baseline individuals available from each stock was (A) 30, (B) 15, and (C) 5. The column with the heading “Other” 
refers to additional stocks inferred by the method. Stocks correspond to five different rivers: Tornionjoki (TornW), Simojoki 
(Simo), Iijoki (Ii), Oulujoki (Oulu), and Neva. 

Allocation 

Origin TornW Simo Ii Oulu Neva Other 

A 

B 

C 

TornW 
Simo 
Ii 
Oulu 
Neva 
TornW 
Simo 
Ii 
Oulu 
Neva 
TornW 
Simo 
Ii 
Oulu 
Neva 

0.80 
0.03 
0.11 
0.03 
0.00 
0.72 
0.02 
0.11 
0.04 
0.00 
0.59 
0.04 
0.20 
0.03 
0.00 

0.01 
0.95 
0.02 
0.01 
0.00 
0.03 
0.94 
0.03 
0.01 
0.00 
0.06 
0.90 
0.06 
0.01 
0.00 

0.15 
0.02 
0.84 
0.01 
0.00 
0.18 
0.02 
0.84 
0.03 
0.00 
0.23 
0.04 
0.70 
0.05 
0.00 

0.03 
0.00 
0.03 
0.95 
0.00 
0.06 
0.02 
0.02 
0.91 
0.00 
0.09 
0.01 
0.03 
0.91 
0.00 

0.00 
0.00 
0.00 
0.00 
1.00 
0.00 
0.00 
0.00 
0.00 
0.99 
0.01 
0.00 
0.00 
0.00 
0.98 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.02 
0.00 
0.01 
0.00 
0.02 
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Table 3 
Origin identification performance when the sample consists of 40 individuals from the Iijoki River (Ii) and 10 individuals from 
another stock. Stocks correspond to five different rivers: Tornionjoki (TornW), Simojoki (Simo), Iijoki (Ii), Oulujoki (Oulu), and 
Neva.Baseline information was in each case available only from Ii (40 simulated individuals). The numbers are based on 50 
replicates of each configuration. 

Percentage of Percentage of correct 
correct recognition recognition for individuals 

for individuals from Ii from the outgroup Percentage of replicates 
Stock without where at least 50% of 
baseline (outgroup) min. max. avg. min. max. avg. the outgroup was recognized 

Neva 0.95 1.00 0.9955 
Oulu 0.875 1.00 0.9665 
Simo 0.85 1.00 0.9705 
TornW 0.90 1.00 0.9820 

categorized in this respect as neutral (no biasing effect; 
Table 4, A and B), positive (strengthens the inference; 
Table 4C), negative (biases the inference; Table 4, D 
and E). 

Our results indicate that commonly occurring levels 
(<5%) of missing marker data do not inhibit the ability 
of our method to detect the correct stocks, assuming 
that the missing values are randomly distributed over 
loci and individuals (Table 5). As an overall conclusion 
from the simulations, it is clear that the genetic dis-
similarities of the stocks matter most for identification 
performance. When baseline samples are available for 
all stocks, most individuals can be correctly assigned 
to their origin even when the genetic distance between 
the stocks is negligible (such as between Tornionjoki 
and Iijoki rivers). Usefulness of the conditional poste-
rior probabilities for characterization of the allocation 
uncertainty is exemplified in Table 6. 

The number of inferred putative stocks was in general 
well in accordance with the underlying true number and 
there was no tendency to overestimate k. However, when 
the number of available marker loci was decreased to 
five (Table 7), the probability of obtaining additional pu-
tative stocks was slightly increased. Because it is widely 
known that the level of polymorphism of the markers 
affects their usefulness in origin identification, it is 
difficult to specify very clear boundaries with respect 
to the amount of loci necessary for an acceptable per-
formance of any assignment method. It is important to 
notice that an acceptable characterization of uncertainty 
inherently depends on the real biological context in a 
particular modeling situation. As a simple rule of thumb 
for our method, we would suggest that NL≤6 might be 
regarded as an insufficient value for reliable estimation. 
However, when auxiliary information is available such 
that the sample data can be grouped before analysis (as 
in Table 8), the statistical power to detect correct ori-
gins and k increases considerably. This situation would 
correspond to a geographical sampling scheme where 
the individuals assigned to the same sampling unit are 
caught simultaneously at a specific location. 

0.9 1.00 0.998 1.00 
0.0 1.00 0.7440 0.86 
0.0 1.00 0.6820 0.90 
0.0 0.80 0.3660 0.34 

Discussion 

We have introduced a novel Bayesian method for an 
investigation of stock mixtures using molecular marker 
data by suitably modifying existing partition-based 
Bayesian models for estimation of genetic population 
structure. To enable smooth applicability, the imple-
mentation is made freely available in a user-friendly 
software. One particular advantage of our method is the 
possibility of appropriately analyzing data in a situation 
where only partial baseline information is available for 
the potential stocks. Use of an analytical integration 
approach enhances considerably the numerical perfor-
mance when the stock mixture structure is challenging 
(e.g., in the presence of small stocks for which no base-
line samples have been collected). 

Contrary to the earlier Bayesian methods introduced 
in Corander et al. (2003, 2004), we have exploited a con-
siderably less computationally intensive strategy that 
is based on stochastic optimization instead of MCMC 
simulation. To obtain stable estimates for moderate to 
large data sets, many long parallel MCMC chains would 
be needed, but the process for obtaining these chains 
often is not feasible under a single CPU architecture. 
Our intelligent search strategy, instead of the random 
search used in MCMC, seems to resolve this problem 
very efficiently. A disadvantage of stochastic optimiza-
tion compared to optimization with MCMC is that a 
statistically consistent estimate of the number of stocks 
contributing to the sample cannot be derived. Neverthe-
less, our novel method has performed satisfactorily in 
this respect under realistic sampling scenarios. We are 
currently exploring possibilities for using intelligent 
proposals in MCMC and an online-based parallel imple-
mentation of the method, both of which would provide 
an ideal framework for biologists using molecular data 
in stock mixture estimation. 

The most relevant biological assumptions used in our 
approach are HWE and nonlinkage of the marker loci. 
The latter assumption is generally valid, at least ap-
proximately, for the microsatellite markers often used in 
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Table 4 
Allocation of 30 sample individuals from each of five 
stocks (150 individuals in total) under different baseline 
settings: (A) no baseline, (B) 40 baseline individuals from 
TornW, (C) 40 baseline individuals from TornW and Ii, 
(D) 15 baseline individuals from TornW and Ii, (E) 15 
baseline individuals from Simo. Each “C” refers to an 
inferred putative stock for which no baseline information 
was available. Stocks correspond to five different rivers: 
Tornionjoki (TornW), Simojoki (Simo), Iijoki (Ii), Oulujoki 
(Oulu), and Neva. 

Allocation 

Origin C1 C2 C3 C4 C5 

A TornW 3 1 0 3 23 
Simo 1 1 0 25 3 
Ii 0 1 0 4 25 
Oulu 0 28 0 0 2 
Neva 0 1 29 0 0 

TornW C2 C3 C4 

B TornW 28 1 1 0 
Simo 2 27 1 0 
Ii 26 4 0 0 
Oulu 2 0 28 0 
Neva 0 0 0 30 

TornW Ii C3 C4 C5 

C TornW 22 6 1 1 0 
Simo 1 2 26 1 0 
Ii 5 25 0 0 0 
Oulu 3 1 0 26 0 
Neva 0 0 0 0 30 

TornW Ii C3 C4 

D TornW 24 5 0 1 
Simo 1 2 0 27 
Ii 5 23 0 2 
Oulu 29 1 0 0 
Neva 0 1 29 0 

Simo C2 C3 C4 C5 

E TornW 12 2 1 15 0 
Simo 29 1 0 0 0 
Ii 24 0 0 5 1 
Oulu 1 0 28 1 0 
Neva 0 0 0 0 30 

Table 5 
(A) Average numbers of allocations (over 20 replicates) to 
the different stocks under an uneven sample size distri-
bution: TornW, n=60, Simo, n=20, Ii, n=30, Oulu, n=5, 
Neva, n=10. Stocks correspond to five different rivers: 
Tornionjoki (TornW), Simojoki (Simo), Iijoki (Ii), Oulujoki 
(Oulu), and Neva. The number of baseline individuals 
available from each of the five stocks was 30. The column 
with the heading “Other” refers to additional stocks 
inferred by the method. The results in (B) are otherwise 
based on an analogous configuration, except that 5% of 
the marker data was randomly set as missing values. 

Allocation 

Origin TornW Simo Ii Oulu Neva Other 

A TornW 47.5 1.2 7.9 3.2 0.0 0.3 

Simo 0.6 18.9 0.3 0.2 0.1 0.0 

Ii 3.1 1.2 25.3 0.5 0.0 0.0 

Oulu 0.3 0.0 0.1 4.7 0.0 0.0 

Neva 0.0 0.1 0.1 0.0 9.9 0.0 

B TornW 47.4 1.7 7.2 3.6 0.2 0.2 

Simo 0.6 18.4 0.8 0.3 0.0 0.1 

Ii 3.5 1.1 25.0 0.5 0.0 0.1 

Oulu 0.3 0.1 0.1 4.6 0.0 0.0 

Neva 0.0 0.1 0.0 0.1 9.9 0.1 

Table 6 
Average conditional posterior probabilities (over 20 repli-
cates) for allocations of individuals to the different stocks 
under an uneven sample size distribution: TornW, n=60, 
Simo, n=20, Ii, n=30, Oulu, n=5, Neva, n=10. Stocks 
correspond to five different rivers: Tornionjoki (TornW), 
Simojoki (Simo), Iijoki (Ii), Oulujoki (Oulu), and Neva. 
The number of baseline individuals available from each 
stock was 30. The column with the heading Other refers 
to additional stocks inferred by the method. 

Allocation 

Origin TornW Simo Ii Oulu Neva Other 

TornW 0.80 0.03 0.13 0.04 0.00 0.00 

Simo 0.02 0.94 0.03 0.01 0.00 0.00 

Ii 0.12 0.04 0.82 0.03 0.00 0.00 

Oulu 0.06 0.01 0.03 0.90 0.00 0.00 

Neva 0.00 0.00 0.00 0.01 0.99 0.00 

stock mixture analyses. Minor deviations from HWE are 
not expected to notably affect our inference method; how-
ever, presence of samples from small stocks under strong 
inbreeding could result in an overestimation of k when 
there is limited baseline information available. Samples 

from such stocks would tend to be split into parts by the 
model if no baseline information about the stock allele 
frequencies can be used to identify the joint origin. 

In addition to the molecular markers, auxiliary infor-
mation, such as simultaneous catch at a common geo-
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Table 7 
Average numbers of allocations (over 20 replicates) to the 
different stocks under an uneven sample size distribution: 
TornW, n=60, Simo, n=20, Ii, n=30, Oulu, n=5, Neva, 
n=10. Stocks correspond to five different rivers: Tornion-
joki (TornW), Simojoki (Simo), Iijoki (Ii), Oulujoki (Oulu), 
and Neva. The number of baseline individuals available 
from each of the five stocks was 30. The column with the 
heading “Other” refers to additional stocks inferred by 
the method. The marker loci used for inference were ran-
domly sampled from the original nine microsatellites for 
each replicate; in (A) seven loci were used, in (B) five loci 
were used. 

Allocation 

Origin TornW Simo Ii Oulu Neva Other 

A TornW 44.5 3.2 7.6 4.3 0.2 0.0 
Simo 0.9 17.8 0.9 0.4 0.0 0.1 
Ii 2.8 1.6 24.7 0.9 0.1 0.0 
Oulu 0.3 0.1 0.2 4.5 0.0 0.0 
Neva 0.0 0.0 0.0 0.0 10.0 0.0 

B TornW 37.3 4.5 9.3 5.5 0.5 3.1 
Simo 1.0 16.5 1.4 0.6 0.2 0.4 
Ii 3.3 2.8 21.2 2.2 0.1 0.5 
Oulu 0.5 0.2 0.4 4.0 0.0 0.1 
Neva 0.1 0.0 0.1 0.2 9.6 0.2 

graphical location, can be incorporated into the analysis. 
This information is incorporated by the pre-assignment of 
individuals in the catch data to a priori sampling units, 
when such are considered to be relevant for the species 
under investigation. Such prior information is particu-
larly useful if the available molecular data are scarce 
because it enhances the statistical power to detect correct 
stock origins, as illustrated in our example analyses. 

Although the Bayesian method that we propose seems 
to be a versatile tool for stock mixture identification, 
certain modifications of the model would also provide 
fruitful extensions for a variety of biological settings. 
Current use of the auxiliary information necessitates 
that the individuals assigned to the same sampling 
unit represent with certainty the same origin. However, 
the existence of such conclusive information cannot be 
assumed in applications in general. There is still a pos-
sibility of incorporating information about a tendency 
to a geographical clustering among the catch individu-
als with respect to the stock origin, through a suitable 
modification of the prior distribution of the partitions. 
In general, use of biological information concerning the 
behaviour of a species, in combination with geographical 
sampling information, provides a rich area for further 
model development. In particular, this combination of 
information highlights the potential use of the Bayesian 
statistical framework because the relevant biological in-
formation can often be efficiently incorporated through 
the prior distributions for the model parameters. 

Table 8 
Allocation of the 25 sample individuals from each of five 
stocks (125 individuals in total) under different baseline 
settings: (A) no baseline, (B) 15 baseline individuals from 
each stock, (C) 15 baseline individuals from each stock, 
and auxiliary biological information was introduced by 
considering the simulated catch data as sampling units 
of the size of five individuals. Stocks correspond to five 
different rivers: Tornionjoki (TornW), Simojoki (Simo), 
Iijoki (Ii), Oulujoki (Oulu), and Neva. Each “C” refers to 
an inferred putative stock for which no baseline informa-
tion was available. 

Allocation 

Origin C1 C2 C3 C4 

A TornW 20 0 4 1 
Simo 2 0 2 21 
Ii 20 1 3 1 
Oulu 1 0 24 0 
Neva 0 24 1 0 

TornW Simo Ii Oulu Neva 

B TornW 18 0 7 0 0 
Simo 2 23 0 0 0 
Ii 0 1 23 1 0 
Oulu 2 0 0 23 0 
Neva 0 0 0 1 24 

TornW Simo Ii Oulu Neva 

C TornW 25 0 0 0 0 
Simo 0 25 0 0 0 
Ii 0 0 25 0 0 
Oulu 0 0 0 25 0 
Neva 0 0 0 0 25 
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